I B.Tech - II Semester - Regular/Supplementary Examinations

 April - 2019
BASIC ELECTRONIC DEVICES AND CIRCUITS (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks

$$
11 \mathrm{x} 2=22 \mathrm{M}
$$

1.

a) How P and N type semiconductors are formed?
b) Differentiate half wave and full wave rectifier.
c) Why collector region is greater than emitter region?
d) Deduce the relationship between α and β.
e) Write the difference between BJT and JFET.
f) What is the need for biasing a BJT.
g) What is meant by Q-Point?
h) Why CE configuration is mostly used in the design of amplifiers?
i) Why h parameters are used in small signal analysis?
j) Define feedback amplifier? How it classify.
k) What are the advantages of negative feedback amplifier?
PART - B

Answer any $\boldsymbol{T H R E E}$ questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) What is the significance of breakdown in junctions? Explain Avalanche and Zener break down. 8 M
b) Explain the volt-ampere characteristics of tunnel diode with the help of energy band diagrams. 8 M
3. a) Show that transistor acts as an amplifier and switch. 8 M
b) Discuss about enhancement and depletion mode of MOSFET. 8 M
4. a) Why self bias circuit is preferred than other biasingcircuits? Derive the expression for stability factor of selfbias circuit.8 M
b) Define Thermal runaway, how to overcome this? 8 M
5. a) For a single stage transistor amplifier, $\mathrm{R}_{\mathrm{S}}=5 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{~K} \Omega$ the h - parameter values are $\mathrm{h}_{\mathrm{fe}}=50$, $\mathrm{h}_{\mathrm{ie}}=1.1 \mathrm{~K} \Omega, \mathrm{~h}_{\mathrm{re}}=2.5 \times 10^{-4}, \mathrm{~h}_{\mathrm{oe}}=25 \mu \mathrm{~A} / \mathrm{V}$. Find $A_{I}, A_{V}, A_{V s}, R_{i}$, and R_{o} for the $C E$ transistor configuration.
b) Draw the transistor hybrid- π model. Explain the analysis of CE transistor at high frequencies. 8 M
6. a) Draw the block diagram of a feedback amplifier and explain each block giving its function.
b) What is the Condition for sustained oscillations, draw and explain the RC-phase shift oscillator with transistor.
